Four New Trisnorlanostene-Type Triterpenoids from the Stem Bark of *Pinus luchuensis*

Shun-ich Wada* and Reiko Tanaka

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

Received March 29, 2000

Four new 25,26,27-tris*nor*lanostene-type triterpenoids were isolated from the stem bark of *Pinus luchuensis*, together with five known compounds. These new compounds were characterized as 25,26,-27-tris*nor*-3 α -hydroxy-lanost-9(11)-en-24-oic acid (1), 25,26,27-tris*nor*-3 α -methoxy-lanost-9(11)-en-24-oic acid (2), 25,26,27-tris*nor*-3 β -methoxy-lanost-9(11)-en-24-oic acid (3), and 25,26,27-tris*nor*-3-oxo-lanost-9(11)-en-24-oic acid (4) on the basis of MS and NMR evidence.

We have investigated bioactive triterpenoids from plant sources and reported that some triterpenoids exhibit antitumor promotion¹ and topoisomerase-II inhibitory activities.² In continuation of our studies on the constituents of the genus *Pinus*,³ we investigated the constituents of P. luchuensis Mayr. (Pinaceae), a tall evergreen tree. In 1975, Cheng, et al.4 reported the isolation of some serratane-type triterpenoids, 3β -methoxyserrat-14-en-21-one, serrat-14-en-3,21-dione, 3β -hydroxyserrat-14-en-21-one, 3β ,- 21α -dimethoxyserrat-14-ene, and 3β -methoxyserrat-14-en-21 α -ol, from the bark of *P. luchuensis*. A search for additional constituents in the CHCl₃ extract has led to the isolation of four new 25,26,27-trisnorlanostene-type triterpenoids, together with five known compounds. This paper deals with the characterization of the above new nortriterpenoids.

Results and Discussion

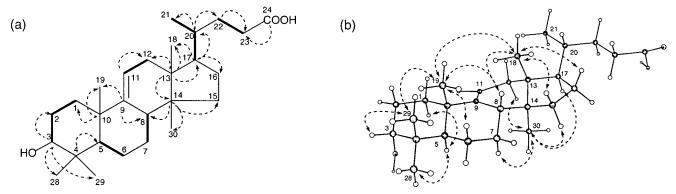
The air-dried stem bark of *P. luchuensis* was extracted with CHCl₃. The CHCl₃ extract was separated by a combination of normal-phase Si gel, LH-20 column chromatography and medium-pressure liquid chromatography (MPLC) followed by preparative TLC to afford five known compounds and four new compounds (1–4). The known compounds were identified as friedelin, β -sistosterol, 13epimanoyloxide, dehydroabietic acid, and methyl dehydroabietate by direct comparison of the NMR, MS, and physicochemical data with the authentic samples.

Compound **1** was assigned the molecular formula $C_{27}H_{44}O_3$ by HREIMS. The IR spectrum indicated absorption bands for a hydroxyl (ν_{max} 3451 cm⁻¹) and carboxyl (ν_{max} 1713 cm⁻¹) groups. The ¹H and ¹³C NMR spectra (Tables 1 and 2) showed five tertiary methyl groups, a secondary methyl group, an axial-oriented secondary hydroxyl group [δ_{H} 3.43 (t, J = 3.0 Hz), δ_{C} 76.3 (d)], a trisubstituted double bond [δ_{H} 5.26 (dt), δ_{C} 148.5 (s) and 114.6 (d)], and a carboxyl group [δ_{C} 178.6 (s)]. The gross structure of compound **1** was established by detailed analyses of the ¹H-¹H COSY, HMQC, HMBC, and NOESY spectral data. Figure 1(a) shows the ¹H-¹H connectivities observed in the ¹H-¹H correlations observed in the HMBC spectrum. These data established compound **1** as a tris-

norlanostene-type triterpenoid having a hydroxyl group, a carboxyl group, and a double bond at positions 3, 20, and 9(11), respectively. The HMBC spectrum indicated crosspeaks between C-3 ($\delta_{\rm C}$ 76.3, d) and H-2 α ($\delta_{\rm H}$ 1.68, m), H-2 β ($\delta_{\rm H}$ 2.00, dddd), H₃-28 ($\delta_{\rm H}$ 0.96, s), and H₃-29 ($\delta_{\rm H}$ 0.88, s); C-24 ($\delta_{\rm C}$ 178.6, s) and H_2-23 ($\delta_{\rm H}$ 2.28 and 2.42, each ddd); C-9 (δ_{C} 148.5, s) and H-8 (δ_{H} 2.18, br d) and H₃-19 (δ_{H} 1.06; s), and C-11 (δ_C 114.6, d) and H-12 α (δ_H 2.08, br d) and H-12 β ($\delta_{\rm H}$ 1.89, m). Furthermore, the NOESY spectrum showed NOE correlations between H-5 ($\delta_{\rm H}$ 1.31) and H₃-28 α ($\delta_{\rm H}$ 0.96) and H-1 α ($\delta_{\rm H}$ 1.79) and between H-8 ($\delta_{\rm H}$ 2.18) and H₃-18 β and H₃-19 β ($\delta_{\rm H}$ 0.65 and 1.06) [Figure 1(b)]. The data indicated that the configuration at both H-5 and H-8 should be α . Therefore, compound 1 was determined to be a new compound, 25,26,27-tris*nor*-3a-hydroxy-lanost-9(11)-en-24-oic acid.

Compounds **2**–**4** were assigned the molecular formulas, C₂₈H₄₆O₃, C₂₈H₄₆O₃, and C₂₇H₄₂O₃, respectively by HRE-IMS. The signal patterns in the IR and the ¹H and ¹³C NMR spectra of compounds 2-4 are similar to those of compound 1. However, the signals, originating from an α -methoxy group [δ_H 3.31, s (OCH₃) and 2.81, t (CHOCH₃)] in compound **2** or from a β -methoxy group [$\delta_{\rm H}$ 3.37, s (OCH₃) and 2.65, dd (CHOCH₃)] in compound 3, were observed and thus indicated the methylation of the free hydroxyl group in compounds 2 and 3. A downfield carbonyl group ($\delta_{\rm C}$ 217.2, s; $\nu_{\rm max}$ 1698 cm⁻¹) indicated the oxidation of the hydroxyl group in compound 4. The structures of compounds 2-4 were confirmed by extensive 2D NMR experiments. The correlation patterns in the 2D NMR spectra of compounds 2-4 resembled those of compound 1. In the HMBC spectra, cross-peaks were observed between C-3 and α -OMe, H₃-28, H₃-29, and H₂-2 in compound **2**, between C-3 and β -OMe, H₃-28, H₃-29, and H₂-2 in compound **3**, and between the carbonyl group and H_3 -28, H₃-29, and H₂-2 in compound 4. From the above data, compounds 2-4 were identified as new compounds, 25,-26,27-trisnor-3α-methoxy-lanost-9(11)-en-24-oic acid (2), 25,26,27-tris*nor*- 3β -methoxy-lanost-9(11)-en-24-oic acid (**3**), and 25,26,27-trisnor-3-oxo-lanost-9(11)-en-24-oic acid (4). This is the first report of the isolation of compounds 1-4in the literature; however, another trisnortriterpenoid, 25,-26,27-tris*nor*- 3β -hydroxy-24-dimethoxycycloartane, has been

^{*} To whom correspondence should be addressed. Fax: (+81)726-90-1005. E-mail: wada@oysun01.oups.ac.jp.



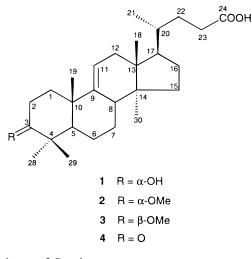

Figure 1. (a) Partial ¹H-¹H COSY (-) and HMBC (--->, C to H) and (b) NOESY correlations of compound 1.

Table 1. ¹H NMR Data for Compounds 1-4 (500 MHz, CDCl₃)^{a,b}

position	1	2	3	4
1α	1.79 m	1.71 m	1.38 m	1.80 m
1β	1.50 m	1.42 m	1.82 m	2.10 m
2α	1.68 m	1.85 m	1.71 m	2.41 ddd (15.5, 5.0, 3.0)
2β	2.00 dddd (14.5, 14.5, 4.0, 3.0)	1.75 m	1.48 m	2.72 ddd (15.5, 13.5, 6.5
3α			2.65 dd (11.5, 4.0)	
$\begin{array}{c} 1\beta\\ 2\alpha\\ 2\beta\\ 3\alpha\\ 3\beta\\ 5\alpha\end{array}$	3.43 t (3.0)	2.81 t (3.0)		
5α	1.31 m	1.30 m	0.86 m	1.37 m
6α	1.92 m	1.90 m	1.92 m (2H)	1.64 m (2H)
$ \begin{array}{c} 6\beta\\ 7\alpha\\ 7\beta\\ 8\beta\\ 11 \end{array} $	1.36 m	1.35 m		
7α	1.65 m	1.60 m	1.66 m	1.70 m (2H)
7β	1.37 m	1.40 m	1.33 m	
8 β	2.18 br d (11.0)	2.16 br d (10.5)	2.17 br d (11.5)	2.23 br d (11.5)
11	5.26 dt (6.0, 2.0)	5.22 dt (6.5, 2.0)	5.22 dt (6.0, 1.5)	5.29 dt (6.0, 2.0)
12α	2.08 br d (17.5)	2.06 br d (18.0)	2.07 br d (19.5)	2.09 m
12β	1.89 m	1.88 m	1.89 m	1.92 m
15α	1.36 m (2H)	2.35 t (7.5)	1.36 m (2H)	1.38 m (2H)
15β		1.34 m		
16α	1.58 m	1.58 m	1.67 m	1.95 m
16β 17	1.46 m	1.40 m	1.46 m	1.36 m
17	1.61 m	1.60 m	1.60 m	1.62 m
18	0.65 s	0.65 s	0.65 s	0.68 s
19	1.06 s	1.06 s	1.04 s	1.23 s
20	1.45 m	1.44 m	1.44 m	1.46 m
21	0.90 d (6.0)	0.90 d (6.5)	0.90 d (6.5)	0.91 d (6.5)
22	1.34 m	1.34 m	1.34 m	1.35 m
	1.85 m	1.84 m	1.84 m	1.86 m
23	2.28 ddd (16.0, 9.5, 6.5)	2.27 ddd (15.8, 9.6, 6.5)	2.28 ddd (15.8, 10.0, 6.5)	2.29 ddd (15.8, 10.0, 6.5
	2.42 ddd (16.0, 10.0, 5.0)	2.42 ddd (15.6, 10.0, 5.5)	2.42 ddd (15.8, 10.0, 5.5)	2.43 ddd (15.8, 10.0, 5.0
28	0.96 s	0.93 s	0.97 s	1.08 s
29	0.88 s	0.87 s	0.80 s	1.07 s
30	0.75 s	0.74 s	0.74 s	0.75 s
OMe		3.31 s	3.37 s	

^a Assignments were determined by ¹H-¹H COSY, NOESY, HMQC, and HMBC spectra. ^b J values are given in Hz.

reported from the aerial part of Euphorbia broteri.⁵

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Optical rotations were measured using a JASCO DIP-1000 digital polarimeter. ¹H and ¹³C NMR

spectra were obtained on a Varian INOVA 500 spectrometer with standard pulse sequences, operating at 500 and 125 MHz, respectively. CDCl₃ was used as the solvent and TMS as the internal standard. EIMS were recorded on a Hitachi 4000H double-focusing mass spectrometer (70 eV). Column chromatography was carried out over Si gel (70-230 mesh, Merck) and Sephadex LH-20 (Pharmacia Fine Chem.), and MPLC was carried out with Si gel (230–400 mesh, Merck). Fractions obtained from column chromatography were monitored by TLC (Si gel 60 HF₂₅₄) and ¹H NMR. Preparative TLC was carried out on Merck Si gel PF₂₅₄ plates (20 \times 20 cm, 0.5 mm thick).

Plant Material. The stem bark of *P. luchuensis* Mayr. was collected at Okinawa Forest Experiment Station, Okinawa Prefecture, Japan, in September 1998. The extraction was carried out in October 1998.

Extraction and Isolation. The chopped stem bark (25.2 kg) of *P. luchuensis* was extracted with $CHCl_3$ in an automatic percolator at 60 °C for 1 week. The $CHCl_3$ extract (420 g) was chromatographed on Si gel using *n*-hexane-CHCl₃ (1:1), CHCl₃, CHCl₃-EtOAc (5:1 \rightarrow 1:1), EtOAc, and EtOAc-MeOH (1:1) as eluents, and was collected in nine fractions (I–IX). Fractions IV and VI gave a positive color with Liebermann-Burchard reagent.

Fraction IV (56.7 g) was rechromatographed on a Si gel column using CHCl₃, to afford 5 fractions (IV-A–IV-E). Repeated column chromatography of fraction IV-A (3.83 g) using Si gel gave friedelin (20 mg), β -sistosterol (52 mg), 13-

Table 2. ¹³C NMR Data for Compounds 1-4 (125 MHz, CDCl₃)a

position	1	2	3	4
1	30.5 t	30.8 t	36.0 t	36.7 t
2	25.7 t	20.4 t	22.5 t	34.9 t
3	76.3 d	85.9 d	88.6 d	217.2 s
4	37.9 s	38.1 s	39.0 s	47.7 s
5	46.7 d	47.3 d	53.0 d	53.4 d
6	27.9 t	27.9 t	27.9 t	22.6 t
7	28.0 t	27.9 t	28.1 t	27.7 t
8	41.9 d	41.9 d	41.8 d	41.9 d
9	148.5 s	148.6 s	148.7 s	147.1 s
10	39.4 s	39.4 s	39.4 s	39.1 s
11	114.6 d	114.2 d	114.7 d	116.2 d
12	37.1 t	37.1 t	37.1 t	37.2 t
13	44.3 s	44.3 s	44.4 s	44.3 s
14	47.2 s	47.2 s	47.1 s	47.0 s
15	33.9 t	33.9 t	33.9 t	33.9 t
16	21.3 t	21.2 t	21.2 t	27.9 t
17	50.7 d	50.7 d	50.8 d	50.8 d
18	14.4 q	14.4 q	14.4 q	14.5 q
19	22.1 q	22.2 q	22.3 q	21.8 q
20	35.7 đ	35.7 đ	35.7 đ	35.7 đ
21	18.0 q	18.0 q	18.0 q	18.0 q
22	31.1 t	31.1 t	31.1 t	31.1 t
23	30.9 t	30.9 t	30.9 t	30.9 t
24	178.6 s	178.6 s	178.4 s	178.6 s
28	28.4 q	28.4 q	28.3 q	25.6 q
29	22.5 q	22.9 q	16.4 q	22.0 q
30	18.5 q	18.5 q	18.5 q	18.4 q
OMe		57.0 q	57.5 q	

^a Assignments were determined by DEPT, ¹H-¹H COSY, NOE-SY, HMQC, and HMBC spectra.

epimanoyloxide (49 mg), dehydroabietic acid (450 mg), and methyl dehydroabietate (120 mg), which were identified by direct comparison with authentic samples. The IV-D fraction (6.83 g) was subjected to LH-20 column chromatography (CHCl₃-MeOH, 1:1), preparative TLC (CHCl₃-MeOH, 98:2), and recrystallization to give compounds 2 (14.2 mg), 3 (13.5 mg), and 4 (8.5 mg) as colorless needles ($CHCl_3$ -MeOH).

Fraction VI (27.3 g) was fractionated by Si gel column chromatography using CHCl₃ into five fractions (VI-A-VI-E). Further fractionation of VI-D (509.5 mg) by LH-20 column chromatography (CHCl₃-MeOH, 1:1), preparative TLC (CHCl₃-MeOH, 98:2), and recrystallization yielded compound 1 (15.3 mg) as colorless needles (CHCl₃-MeOH).

25,26,27-Tris*nor*-3α-hydroxy-lanost-9(11)-en-24-oic acid (1): mp 180–185 °C (CHCl₃–MeOH); $[\alpha]^{15}_{D}$ +59° (CHCl₃, c 0.24); IR (KBr) v_{max} 3451 (OH), 3041 (=CH-), 2872, 1713

(COOH), 1451, 1373, 1183, 1066, 984, 816 (-CH=C<) cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2; EIMS (70 eV) *m*/*z* 416 $[M]^+$ (29), 401 $[M - Me]^+$ (54), 383 $[M - Me - H_2O]^+$ (100), 287 $[C_{20}H_{31}O]^+$ (9), 175 (12), 161 (9), 121 (10), 119 (12), 109 (10), 95 (13), 52 (10); HREIMS m/z 416.3295 (calcd for C₂₇H₄₄O₃, 416.3288).

25,26,27-Trisnor-3a-methoxy-lanost-9(11)-en-24-oic acid (2): mp 168–170 °C (CHCl₃–MeOH); $[\alpha]^{15}_{D}$ +23° (CHCl₃, c 0.16); IR (KBr) v_{max} 3460 (OH), 3043 (=CH-), 2852, 1718 (COOH), 1466, 1373, 1103, 976, 815 (-CH=C<) cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2: EIMS (70 eV) *m*/*z* 430 [M]⁺ (56). $415 [M - Me]^+$ (57), 383 (100), 368 (9), 340 (9), 287 (10), 227 (13), 175 (16), 83 (43); HREIMS m/z 430.3445 (calcd for C₂₈H₄₆O₃, 430.3445).

25,26,27-Trisnor-3*β*-methoxy-lanost-9(11)-en-24-oic acid (3): mp 222–225 °C (CHCl₃–MeOH); $[\alpha]^{15}_{D}$ +35° (CHCl₃, c 0.11); IR (KBr) $\nu_{\rm max}$ 3457 (OH), 3047 (=CH–), 2871, 1732 (COOH), 1459, 1371, 1090, 985, 814 (-CH=C<) cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2; EIMS (70 eV) *m*/*z* 430 [M]⁺ (39), 415 $[M - Me]^+$ (68), 383 (100), 276 (12), 261 (11), 175 (15), 135 (14), 95 (16), 52 (14); HREIMS m/z 430.3445 (calcd for C₂₈H₄₆O₃, 430.3445).

25,26,27-Trisnor-3-oxo-lanost-9(11)-en-24-oic acid (4): mp 190–193 °C (CHCl₃–MeOH); [α]¹⁵_D +34° (CHCl₃, *c* 0.13); IR (KBr) v_{max} 3405 (OH), 3041 (=CH-), 2869, 1713 (COOH), 1698 (C=O), 1457, 1376, 1280, 1114, 985, 815 (-CH=C<) cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2; EIMS (70 eV) m/z 414 $[M]^+$ (29), 399 $[M - Me]^+$ (100), 381 $[M - Me - H_2O]^+$ (13), 313 $[C_{22}H_{33}O]^+$ (6), 272 $[C_{19}H_{28}O]^+$ (4), 173 (5), 159 (7), 125 (27), 119 (15), 107 (13), 93 (10), 52 (17); HREIMS m/z 414.3139 (calcd for C₂₇H₄₂O₃, 414.3132).

Acknowledgment. We thank Mr. G. Uechi, Okinawa Forest Experiment Station, Okinawa Prefecture, Japan, for the collection of plant material. The authors are also grateful to Mr. K. Minoura and Mrs. M. Fujitake, Osaka University of Pharmaceutical Sciences, for NMR and MS measurements, respectively.

References and Notes

- Takayasu, J.; Tanaka, R.; Matsunaga, S.; Ueyama, H.; Tokuda, H.; Hasegawa, T.; Nishino, A.; Nishino, H.; Iwashima, A. *Cancer Lett.* **1990**, *53*, 141–144.
- Wada, S.; Tanaka, R.; Iida, A.; Matsunaga, S. Bioorg. Med. Chem.
- (a) Wata, S., Tahaka, K., Hat, Matsunaga, S. *Diolog. Met. Chem. Lett.* **1998**, *8*, 2829–2832.
 (3) Tanaka, R.; Matsunaga, S. *J. Pharm. Soc. Jpn.* **1999**, *119*, 319–339.
 (4) Cheng, Y. S.; Chen, E. H. T.; Fang, G. J. M. *J. Chin. Chem. Soc. (Taipei)* **1975**, *22*, 341–347.
 (5) Pascual, T. J.; Urones, J. G.; Marcos, I. S.; Basabe, P.; Sexmero, C. Matara, S. Martin, C. Martin, C. Martin, J. Chem. 2007, 10707, 10707. (4)
- M. J.: Fernandez, M. R. Phytochemistry 1987, 26, 1767-1776.

NP000155K